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ABSTRACT

Modern digital communication systems are being called upon to move ever
increasing amounts of information over decreasingly available bandwidth. This requires
that communication systems employ bandwidth-efficient modulation schemes to conserve
bandwidth while moving the information at higher data rates. A major stumbling block to
using higher order modulation schemes in long haul communication is the distortion caused
by high power amplifiers. These high power amplifiers are required to amplify the signal
power to a level that will allow distant receivers to correctly demodulate and decode the
information. The distortion caused by the high power amplifiers can render a modulation
scheme unusable due to the high symbol error rates which result from the extensive
skewing of the modulation scheme’s signal constellation. This thesis details a predistortion
technique using Volterra series approximation techniques to model the inverse of the high
power amplifier’s distortion characteristics. A 64 Quadrature Amplitude Modulation (64-
QAM) system incorporating a predistorter is used to demonstrate the ability to achieve
acceptable bit error rates. The implementation of the inverse model and the communication
system is performed in MATLAB. The results show the viability of predistortion of digital
data to allow the higher order modulation schemes to be incorporated into communication

schemes, increasing the overall data rate while conserving bandwidth.
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I. INTRODUCTION

This thesis investigates two methods of analyzing the distortion characteristics of
High Power Amplifiers (HPA) found in modern digital communication systems. These
HPAs can alter the transmitted signal to such an extent it is impossible to decode correctly.
The thesis focuses on using digital signal processing techniques to design a predistorter
which will result in the emitted signal being nearly intact and capable of proper decoding
by the receiver. The MATLAB programming language is used throughout this work to
determine the predistorter models and implement them in a 64 Quadrature Amplitude
Modulation (64-QAM) digital communication system.

The first predistortion technique investigated is a Volterra series approximation that
is based on a Minimum Mean Square Error (MMSE) approach to obtain a fixed predistorter
model. The second predistortion technique is a Recursive Least Squares (RLS) adaptive
algorithm. The first technique determines an inverse model predistorter which cannot be
altered once incorporated into the communication system. The second predistortion
technique, however, allows the predistorter to be updated periodically while the
communication system is operating.

The HPA serving as the base model for the transmitter is the Traveling Wave Tube
(TWT) high power amplifier. The TWT HPA was chosen since it is commonly employed
in a large variety of communication systems, and it has a commonly accepted model of its
nonlinear distortion characteristics in analytical form. The existence of this analytical
model precludes the need to experimentally measure the distortion characteristics of a
specific high power amplifier since these characteristics may vary widely within the same
family of HPAs.

This thesis focuses on the performance of the predistorter. A highly simplified
channel model is used in the simulation of the communication system for this purpose. The
MATLAB implementation is designed with the assumption that perfect synchronization of
the phase and beginning of each symbol period is achieved. The results of the predistorter



models show how performance varies with the nonlinear order and memory of the Volterra
series approximation. The predistorter models are incorporated into a 64-QAM
communication system with an additive white gaussian noise (AWGN) channel. The
results of the communication system simulations indicate the ability of the predistorter to
correct the distortion by quantitatively measuring the probability of symbol error, Pg, and
the effect of various signal-to-noise ratios on the probability of symbol error.

The thesis is organized as follows. Chapter II discusses High Power Amplifiers.
Chapter IIT covers digital communication techniques, specifically the 64-QAM system
used in simulations. Chapter IV details the theory of Volterra series, the recursive least
squares algorithm, and their application to predistorter modeling. Chapter V outlines the
simulation and results of the predistorter approximation. Chapter VI contains the
conclusions and areas for further study. The supporting computer code is contained in

Appendices A, B, C, D, and E.




II. HIGH POWER AMPLIFIERS

This chapter discusses the High Power Amplifier (HPA) and its characteristics. The
high power amplifier is used to produce signals with sufficient power to be detected and
correctly demodulated by the receiver. High power amplifiers are divided into classes
based upon the input and output voltage relationship. This influences the power efficiency
of the HPAs and results in distortion of the output signal if the amplifier cannot transition
during its cycles properly. Specifically, power amplifiers with high power efficiencies can
significantly distort a signal during operation. The later sections of this chapter discuss the
distortion of these amplifiers.

A.  CLASSES OF AMPLIFIERS.

Amplifiers are employed to scale the voltage and power levels in most electronics
systems. These amplifiers are designated by their class of operation. An amplifier’s class
is judged by its input-output voltage relationship. Some of these classes and an explanation
of their input-output voltage relationships are summarized below.

1. Class A.

Class A amplifiers are designed to operate in a linear manner, similar to small signal
amplifiers. The distinctive waveform of a Class A amplifier shows the output current flows
for the entire cycle (Figure 2.1 (a)). Class A amplifiers are typically used as low levél driver
amplifiers and in applications where other types of amplifiers cannot be used easily, such
as at microwave frequencies. The primary disadvantage of a Class A amplifier is its high
quiescent power loss, resulting in a maximum theoretical efficiency of only 50 percent
[Refs. 1 and 2].

2. Class B. ‘

Class B amplifiers are biased so that condﬁction occurs only during one-half, or
180°, of a cycle of the input voltage (Figure 2.1 (b)). These amplifiers can be found in
medium and high power linear applications, such as in High Frequency Single Side Band

(HF SSB). Class B amplifiers commonly place a pair of active devices (transistors or



vacuum tubes) 180° out of phase with each other such that only one device is active at a
time during operation. The efficiency of a Class B amplifier is greater than Class A or AB,
a maximum theoretical efficiency of 78.5 percent, but its operation does generate some
nonlinear distortion [Refs. 1, 2, and 4].

3. Class AB.

Class AB operation is a compromise between Class A and Class B. Its current flows

for more than 180° and less than 360° (Figure 2.1 (c)). This compromise yields increased
efficiency over the Class A amplifier and less harmonic distortion than the Class B
amplifier [Ref. 3].

4. Class C.

Class C amplifiers have a higher bias than Class B, well beyond cutoff. This biasing

causes their conduction to occur for less than one-half, or less than 180°, of a duty cycle

(Figure 2.1 (d)). Typically, the conduction interval is in the range of 120° - 150° of biasing,
and the power efficiency is in the range of 60 - 80 percent with the active device in or near
the saturation region. This makes them ideal for RF transmission applications.

Class C amplifiers are found primarily at the transmitter end of long haul
communication systems where high output power levels are required, but proportionality
between the input and output voltages is not critical. For example, they are employed as
radio and television transmitters of 50 kW (or more) and LORAN Navigation Stations of 1
MW. Class C high power amplifiers may employ solid state or vacuum tube active devices.
Vacuum tubes are the workhorses of high power applications.

Class C amplifiers are able to achieve high efficiency if the duration of the current
flow is very small, such as when the voltage drop between the cathode and the plate is at
its lowest. Practical applications require a trade off between the amplifier’s efficiency and
its power output since lower voltage drops reduce the input and output power. Transistors
employed as Class C amplifiers have similar operations but are limited in their power and
frequency ranges. Transistors are principally found in low power applications since care

must be taken not to exceed their current limit [Refs. 4 and 5].
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Figure 2.1: Amplifier Output Waveform Characteristics: (a) Class A amplifier, (b) Class
AB amplifier, (c) Class B amplifier, (d) Class C amplifier.

5. High Efficiency Amplifiers.

There are many classes of amplifiers which operate at higher efficiencies than Class
C amplifiers. The power efficiency is defined as the ratio of the output power to the
collector’s dc input power [Ref. 6]. These include Classes D, E, F, G, H, and S. The active
devices in these amplifiers are transistors, in contrast to other classes which may use
transistors or vacuum tubes. The first group of amplifiers (Class D, F, and S) employs the
transistors as switches, not current sources, where the switch is on for half the cycle and off
for the other half. The resulting waveform is a square wave with the design goal of
minimizing the switching time. Minimizing the switching time, in turn, minimizes the
transmission power loss. The square wave is then filtered to produce a sine wave. These
amplifiers do not employ vacuum tubes as switches since the plate-cathode voltage drop
cannot change sufficiently rapidly to produce a square wave [Ref. 6]. The second group of

amplifiers (Classes E, G, and H) uses multiple power supply voltages, harmonic resonators,




and other circuit technologies. The overall advantage of high efficiency amplifiers is the
ability to use smaller power supplies to generate the same output as other classes of
amplifiers. These amplifiers can be found in cellular phone systems and other applications

where limited power is available [Ref. 6].

B. INTERMODULATION DISTORTION.
Intermodulation Distortion (IMD) is the nonlinear distortion produced as a result of

the inability of an RF power amplifier to exactly reproduce the envelope and phase of an
amplified signal. This distortion has many sources. They include: crossover effects, gain
reduction at high current, variation of collector capacitance with collector voltage, and
device saturation. This thesis considers the nonlinear distortion resulting from an HPA
operating at its saturation point [Ref. 4].

The nonlinear distortion of an HPA operating at its saturation point has two
components: Amplitude-to-Amplitude (AM-to-AM) conversion and Amplitude-to-Phase
(AM-to-PM) conversion. AM-to-AM conversion is a result of the amplifier’s inability to
output an exact replica of the input waveform [Refs. 2 and 6]. AM-to-PM conversion
results from the signal being passed through a reactance larger than the collector’s load
resistance causing a phase variation in the carrier frequency. AM-to-PM conversion is not
detectable by an envelope detector but does cause unwanted sideband frequencies. The
extent of this nonlinear distortion varies with the class, age, temperature, and composition
of the HPA. As a result, many HPAs must be measured experimentally to obtain an
accurate model of their nonlinear distortion characteristics. One significant exception to the
need to model nonlinear distortion experimentally is the Traveling Wave Tube (TWT)
HPA. An analytical model, developed by Saleh [Ref. 7], serves as a standard model for
research into the design of predistorters and channel effects on signals amplified using a

TWT. The AM-to-AM conversion is characterized by:

o r

A(r): (—————1 " ﬁarZ) .

(2.1)




The model for the AM-to-PM conversion is characterized by:

o, r?

= ?
®(r)= "‘_—(1 " 5<pr2) , (2.2)

where r is the input signal’s amplitude. The coefficients O, Oy, Bg, and Py are real and

valued to approximate the standard TWT HPA distortion. The coefficients identifying the
HPA in the communication system modeled in this thesis are obtained from Saleh. As the
value of r becomes large, the AM-to-AM conversion may be approximated by 1/r and the
AM-to-PM conversion approaches a constant value. Figure 2.2 shows the change in non-

linear distortion with respect to the magnitude of the signal amplitude [Ref. 7].
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Figure 2.2: Nonlinear Distortion of TWT HPA.

One method of correcting the distortion of a TWT HPA is to operate it at a lower
power level. This requires the amplifier to operate away from the saturation point, lowering
its power efficiency. A major problem with the HPA’s distortion characteristics is that as

the sophistication of the signal constellation increases, increasing the need for linearity, the



HPA must be “backed off” further from the saturation point to maintain an acceptable bit
error rate (BER). As aresult, M-PSK has been used as a modulation scheme rather than M-
QAM due to the less severe distortion of the signal constellation and the ease of adjusting
the detection scheme to correctly decode symbols. “Backing off” the power level not only
lowers the efficiency of the HPA, but also decreases the transmission range of the
communication system. Alternate means of correcting this distortion must be found to
allow the HPA to operate closer to its saturation point, increasing its efficiency and

transmission range [Refs. 8 and 9].

C. INTERMODULATION DISTORTION CORRECTION.

There are two methods to correct the intermodulation distortion in a TWT HPA.
The first is to “back off” the transmitted power of the amplifier, decreasing the power
efficiency to operate in the amplifier’s linear region. “Backing off” is used when no means
of linearizing the HPA exists, but this is not a preferred means of linearization due to the
reduced output power and efficiency. The second method to correct intermodulation
distortion requires finding efficient methods to linearize nonlinear power amplifiers, like
the TWT HPA. These techniques focus on allowing the HPA to transmit at a power level
as close to the saturation region as possible while reducing the probability of symbol error.
Some of these techniques correct only the AM-to-AM distortion, not the entire HPA
distortion. Hoile [Ref. 10] and Hayashei [Ref. 11] are among the many researchers who
have utilized S parameters to correct the nonlinearities in power amplifiers. The S
parameter methods focus mainly at the active device level and use small signal parameters.
As aresult, they do not always correctly model the characteristics of high power amplifiers.
Others have used techniques such as decision-feedback equalizers or digital table lookup
techniques to interpret symbols [Ref. 12].

A major area of current research interest is the incorporation of a predistorter into
the communication system prior to the up converter and the high power amplifier stages.
Analog predistorters using discrete devices in many forms have been proposed in the
literature [Ref. 13]. Digitally predistorting the signal at baseband eases the hardware

requirements to perform the nonlinearity compensation. All predistorter models focus on




determining an inverse model of the HPA’s AM-to-AM distortion effects while others
focus on both the AM-to-AM and AM-to-PM distortion effects. These inverse models have
been developed using neural network [Ref. 13], polynomial [Ref. 14], and adaptive filter
approximations [Ref. 15]. The use of Volterra series approximations to develop an inverse
model has been discussed in the literature [Ref. 16]. This thesis focuses on using Volterra
series to determine an inverse model for inclusion as a predistorter into a communication
system. Two methods are used to determine the inverse of the HPA’s distortion
characteristics. An MMSE method is used to provide Volterra approximations of higher
nonlinearity orders than the Volterra approximations of other researchers [Refs. 8, 9, and
16]. The MMSE method uses complete kernel coefficient models, as well as limited kernel
coefficient models, to represent the inverse of the distortion characteristics. The second
method is an adaptive Recursive Least Squares (RLS) model. The RLS method uses the

Volterra kernel coefficients to represent the inverse model’s parameters.
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ITII. DIGITAL MODULATION

This chapter discusses the digital transmission of information. The data (binary)
sequence is segmented into L-bit words which are mapped to unique points of a modulation
scheme’s signal constellation. This study focuses on Quadrature Amplitude Modulation
(QAM) which uses voltage levels of two orthogonal signals to represent an L bit word.
Noise introduced into the modulation process may degrade the original signal to a
potentially undetectable signal. The goal is to design the transmitter and receiver in such a

way as to minimize the number of errors in the received signal.

A. QUADRATURE AMPLITUDE MODULATION.

Modern communication systems are consuming ever increasing amounts of the
radio frequency bandwidth. The information age requires that large quantities of
information be transmitted at higher bit rates, which increases bandwidth requirements
when using existing modulation schemes. Engineers designing communication systems are
attempting to transmit the data with increasingly sophisticated modulation schemes to
increase bandwidth efficiency. These sophisticated modulation schemes transmit a greater
amount of information over the same or less bandwidth than simpler modulation schemes.
A popular scheme of interest is M-Quadrature Amplitude Modulation (M-QAM)., where
M=2L, L=1,2,3,4,.., representing the number of bits/symbol. The higher the value of M
the greater the number of bits an M-QAM modulation scheme may transmit in each
symbol. This thesis considers 64-QAM, where L = 6 bits of information per symbol. The
general QAM signal is represented by

s(t) = Ajg(t)cos(2nf 1) - AQg(t) sin(2n f .t) 3.1)

where A; and Ag are the amplitude values of the inphase and quadrature phase signals, g(7)
is the pulse shaping signal, and f, is the carrier frequency of the signal.
The amplitude values Ay and A are used to form signal constellations in the I-Q

plane. Each of the signal constellation’s points has a unique representation of L bits which

11



uses the first L/2 bits to represent the A; coordinate and the second L/2 bits to represent the
A coordinate. These L bits build one symbol. This reduces the number of units required to
represent the same amount of information by a factor of L. This in turn allows the symbol
data rate, R, to be lower than the bit rate, Ry, by a factor of L. This reduction in the symbol
rate decreases the amount of RF bandwidth required to send the data, increasing the
bandwidth efficiency of a communication system.

The signal constellation for a 64-QAM signal is shown in Figure 3.1. The
convention used in this thesis represents the inphase plane component along the x

(horizontal) axis and quadrature component along the y (vertical) axis [Ref. 17].
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Figure 3.1: Original 64-QAM Signal Constellation.

B. QUADRATURE AMPLITUDE MODULATION TRANSMITTER.

The QAM transmitter modeled in this thesis is shown in Figure 3.2. A table lookup
function is performed by the logic device which reads the L bits and identifies the
corresponding unique point in the QAM signal constellation. The QAM symbol, in
complex form, is divided into its real and imaginary parts. The appropriate amplitude

values are then forwarded to the upconversion stage of the modulator. The real (inphase)

12




part of the signal enters the top branch and the imaginary (quadrature) part of the signal
enters the lower branch. Each branch shapes the amplitude value with the pulse generator’s
rectangular signal pulse. The rectangular pulses are then mixed with the carrier signals at
center frequency f. The two modulated signals, orthogonal to each other, are then summed

to obtain a real valued signal. The resulting signal is then amplified by the RF HPA to

produce the signal power required to transmit the symbol to the receiver.

s;(t)
—» PULSE
GENERATOR
Bin Table
cCos ot
Data Lookup © HPA
PULSE
—%1 GENERATOR 5. (t)
q

sin @ t
Figure 3.2: 64-QAM Modulator.

C. QUADRATURE AMPLITUDE MODULATION RECEIVER.

The QAM receiver model is shown in Figure 3.3. The receiver is similar to other
receivers using orthogonal signalling. The incoming signal is processed by both branches
of the QAM receiver where the mixers multiply the signal by the appropriate carrier
signals. The output of each mixer is the appropriate inphase or quadrature signal containing

baseband and 2f, components. The output of the inphase mixer is

rdt) = A,[% + 5 cos(4r £ (32)

and the output of the quadrature mixer is

r0) = AQ[— S+ Scos(4n fct)] (3.3)

13



where A is the inphase voltage level, Ay is the quadrature voltage level, and f, is the car-

rier frequency. The branch signals are then processed by an integrator or a summer ina
digital system. The transfer function of the integrator is a low pass filter, which eliminates
the 2f, component from the signal. The remainder of the signal, the baseband component,

is summed over one symbol period, 7. The output from each summer is then processed by

a logic device to determine the received symbol and decode the output bits [Ref. 18].

r;(t) Z
Decision
Received cos @t Logic Binary
Signal & Data
Decoder
W [y
—>< % )———-» -
sin @t

Figure 3.3: 64-QAM Receiver.

D. PROBABILITY OF SYMBOL ERROR.

The probability of symbol error for a QAM communication system is dependent
upon the signal constellation used in the modulator. The quantity used in determining the
probability of error is the minimum distance, dp;,, between the signal constellation’s
adjacent points. The 64-QAM signal constellétion employed here is rectangular, 8 x 8; as
a result each signal point has the same d,,;,. Rectangular signal constellations allow the
communication system to easily decompose the QAM signal into two Pulse Amplitude
Modulation (PAM) signals on two orthogonal carrier waveforms. The resulting rectangular
constellation has an average power only slightly larger than the ideal signal constellation

[Ref. 19]. The orthogonal signaling allows the QAM system’s probability of error to be

14




derived from the PAM signal. The probability, P, that the transmitted symbol is decoded
correctly is

P=(1-Pg)® 34
where Pg is the probability of error for the 8-PAM communication system. The 8-PAM

system possesses an average symbol power half that of the quadrature branches in the

QAM system. The probability of error for an 8-PAM signal constellation is

_ 1 3 E,,
Py = 2(1 - §)Q[ & (3.5)
where E,, is the average signal energy, N, is the noise energy, and Q( ) is the complemen-

tary error function. The final probability of symbol error, P, for QAM is found from the

probability of a correct decision as P = 1 - P, which yields P, = 1 - (1-Pg)*.

Figure 3.4 shows the theoretical probability of symbol error for different levels of
QAM signaling. It is apparent that as the number of bits/symbol (L) increases the
communication system requires a higher signal to noise ratio to maintain an equivalent
probability of error. The performance of QAM is superior to comparable levels of M-Phase
Shift Keying (M-PSK) when the nonlinear distortion of an HPA is absent [Refs. 17 and 19].
This provides the motivation to employ QAM as a bandwidth efficient modulation scheme.
The probability of bit error for the M-QAM system under discussion is determined to be
the symbol error rate divided by the number of bits per symbol. This approximation is made

possible by the use of Gray coding. Errors usually occur on only one branch of the

15



demodulator and symbol decoder. This causes only one bit, out of the L symbol bits (6 in
64-QAM), to be in error [Ref. 19].
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Figure 3.4: M-QAM Probability of Symbol Error vs. Symbol SNR.

E. HIGH POWER AMPLIFIER INFLUENCE.

The Intermodulation Distortion (IMD) introduced by the TWT HPA, operating near
the saturation region, affects the amplitude and the phase components of the transmitted
signal constellation. IMD is caused by Intersymbol Interference (ISI) and Adjacent
Channel Interference (ACI) [Ref. 20]. The original 64-QAM constellation (see Figure 3.1)
is an 8 x 8 matrix with 64 distinct signal constellation points. Each point is assigned a
unique 6-bit combination to represent one symbol. The 6-bit combinations are arranged in
the signal constellation using a Gray code where only one bit changes between any two
adjacent constellation points. This lowers the probability of bit error in the event that the
receiver incorrectly decodes the received symbol [Ref. 17].

The signal emitted from the summer of the QAM transmitter is given by

x(1) = r(t)cos(2nf .t +w(r)) (3.6)
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where r(2) is the amplitude of the signal, f,. is the carrier frequency, and (?) is the phase
component. This waveform is input to the TWT HPA where the TWT HPA alters the
QAM signal constellation. The resulting TWT HPA output is

y(1)= A[r(1)lcos(2nf . + y(2) + ©(r(2))) (3.7

where A[r(2)] represents the AM-to-AM distortion and P(r(?)) the AM-to-PM distortion.
This nonlinear distortion causes the signal constellation to rotate counterclockwise and
expand as r increases. The 64-QAM signal constellation output from the HPA is shown in
Figure 3.5. The original signal constellation is shown in the dotted lines while the dis-
torted constellation in the solid lines. The majority of the signal constellation points are no
longer within their decision region. The demodulator will now be unable to correctly
decode these symbols. As aresult, the higher levels of QAM cannot be employed satisfac-
torily. The distorted signal constellation demonstrates the need to implement a predistor-
tion scheme to correct the HPA’s distortion and lower the probability of symbol error [Ref.

71.

Quadrature

Figure 3.5: 64-QAM Distorted Signal Constellation.
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IV. VOLTERRA SERIES MODELING

This chapter discusses the modeling of nonlinear systems with the Volterra series.
The Volterra series is essentially a Taylor series with memory, and is an excellent tool to
model moderately nonlinear functions [Ref. 8]. A limited number of terms, p, in the
Volterra series may be used to approximate the inverse of the TWT HPA’s nonlinear
distortion model proposed by Saleh [Ref. 7]. This approximation is the pth order inverse
model and is used to design predistorters to decrease the probability of symbol error due to
the nonlinear distortion of high power amplifiers.

A. CONTINUOUS TIME VOLTERRA SERIES.
The Volterra series is a mathematical modeling technique used to model “black

box” systems, which can be effective when a nonlinear relationship exists between the

input and the output of the “black box.” The basic Volterra series system follows the form
y(t) = H[x(1)] 4.1)

where H is the Volterra operator, which operates on an input x() to yield an output y(z).

The form of the operator H is an infinite series

Hx()] = H{[x(D)] + Hy[x(D)] + ... + H [x(D)] + ... + H [x(?)] (4.2)

where the nth order term has the form

(-] 0

H,[x(1)] = j' Ihn('tl, v TX(E - T) L x(t -t )dry . dr,.  (43)

-00

19



Thus the Volterra series representation of the system can be written explicitly as

y() = hy+ I hi(t)x(t - 7)dyy 4.4)

+ J f ho(ty, Tp)x(2 - T)x(2 - 1)dTdry

-00 00

+ J' j I Ra(Ty, Tp, T3)2(2 = T)x(2 - Tp)x( = T3)dr drpdig + ...

In practice, it is not always necessary or possible to use an infinite number of terms
to produce a sufficiently accurate approximation when using the Volterra series to model a
system [Refs. 8 and 9]. In many cases it is possible to approximate the “black box” with
sufficient accuracy using a finite number, p, of terms. The goal of this thesis is to determine
the number of terms required to reach an accurate approximation of the nonlinear model.
The systems considered in this research were time-invariant due to the memoryless nature
of the high power amplifier’s response. Treating the systems as time-invariant also helps
keep the problem’s complexity manageable [Refs. 21 and 22].

B. DISCRETE TIME VOLTERRA SERIES.

In the discrete form, the Volterra series representation becomes

y(n) = ho+ ¥ hy(n—ipx(iy) 45)

il=_eo

hy(n -1y, n—in)x(i)x(iy)

i ha(n - iy, n =iy n—ig)x(i)x(in)x(iz) + ...

where 4;is the function operator and x(i,, ) is a data input term. The notation of the discrete

time Volterra series can be simplified by substituting the Volterra operator, in the same

20




manner as with the continuous time Volterra series, to yield
y(n)= hy+ H{[x(n)] + Hy[x(n)] + ... + H, [x(n)] + ... (4.6)

where H,, [x(n)] is the Volterra operator. The discrete time Volterra series is solved in the

least squares sense to obtain a finite solution using the matrix equation
y = Xh 4.7)

where y is a column vector of the HPA’s output values, & is a column vector with the Volt-
erra kernel coefficients, and X is a data matrix with the HPA’s input values. The vector y is

given by

[ y(n) ]
y(n+1)
y(n+2)
y(n+3)

y=[|n+d) 4.38)

 y(n +q)]

where ¢ is the memory length of the approximation. The column vector of Volterra kernel

coefficients, A, is given by
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hi(n-i; +2)
hi(n-ij+1)
hy(n-1ip)
ho(n-iy +2,n-iy+2)
hy(n-i;+2,n-iy+1)
hy(n-ij+1,n-iy+2)
h = hy(n-ij+1,n-ip+1)
hy(n-iy+2,n-ip) . (4.9)
hy(n-iy, n-iy+2)
hy(n-iy+1,n-1i,)
hy(n-ij,n-iy+1)
ho(n—iy, n-iy)
hy(n-iy+2,n-ip+2,n-iz+2)

hy(n-ij+2,n-iy+1,n-iz+1)

The data matrix X is constructed of the input signal data to the model. The size of X
depends upon the number of data points, the memory length of the system, ¢, and the
order of the nonlinearity. The number of data points used to approximate the model deter-
mines the number of columns in the matrix. The number of rows depends on the memory
and nonlinearity order of the series approximation. An example of a data matrix showing

portions of the first three orders of nonlinearity with two delay terms is given by
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x(n) x(n+1) x(n+2)
0 x(n) x(n+1)
0 0 x(n)
x(n)x(n) x(n+ Dx(n+1) x(n+2)x(n+2)
0 x(n)x(n+1) x(n+2)x(n+1)
0 x(n+ 1)x(n) x(n+ Dx(n+2)
_ 0 x(n)x(n) x(n+ Dx(n+1)
x= 0 0 x(n+2)x(n) (4.10)
0 0 x(n)x(n+2)
0 0 x(n+ Dx(n)
0 0 x(n)x(n+1)
0 0 x(n)x(n)
x(M)x(n)x(n) x(n+ Dx(n+ Dx(n+ 1) x(n+2)x(n+2)x(n+2)
| 0 x(n+ Dx(n)x(n) x(n+2)x(n+1)x(n+ 1)

where superscript H denotes the Hermetian transpose. As the order of nonlinearity and
memory of the approximation are increased, additional rows can be added to the data
matrix. Potentially, the accuracy of the series approximation will improve as the order of

nonlinearity, as well as the memory length, g, are increased [Refs. 23 and 24].

C.  FINITE (pth) ORDER INVERSE.

The “black box” model to be determined here is the predistortion model used to
represent the inverse of the distortion affects of the HPA. This requires finding an inverse
of the Volterra series model of the HPA. The approximation of the HPA is a pth order
model where p is the order of the nonlinearity. The inverse, if it exists, is the pth order
inverse of the HPA model. The pth order inverse, when placed in cascade with the pth order
model, should yield an impulse for the first order nonlinearity term and zero for the second
through pth order terms. The nonlinear terms for orders p + 1 and above may be nonzero.

The cascade model is shown in Figure 4.1.
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— pipthOrder | pthOrder | o
Inverse System

Figure 4.1: Volterra Series Cascade Model.

Not all Volterra series models possess an inverse. For a highly nonlinear system, it
may be impossible to accurately model its inverse using a Volterra series. One alternative
is to limit the operating range of the model, i.e., restrict operation to an area where the
model is weakly nonlinear. Limiting the operating range may lead to the existence of a pth
order inverse which can be applied to the model’s operational range [Ref. 22].

D. SIMPLIFICATION OF THE VOLTERRA SERIES MODEL.

The traveling wave tube high power amplifier possesses properties which may be
exploited to limit the size of the data matrix and decrease the number of calculations
required. First, since the nonlinear system under consideration is bandpass in nature, all of
the even terms in the Volterra series are zero [Refs. 8 and 9]. These terms can therefore be
ignored and eliminated from the data matrix. Secondly, as mentioned earlier, the Volterra
series can accurately model a nonlinear system with a limited number of terms. This lowers
the order of the nonlinearity which must be used to calculate the predistorter. Thirdly, the
Volterra series, for a time-invariant system, can be represented with symmetric kernels

with no loss of generality [Ref. 22]. That is
hy(ny, ny) = hy(ny, ny) ' 4.11)

and

hs(nl, Ny, n3) = h3(n2, nq, n3) =...= hs(ns, Noy, nl) (412)




where 7, is a second order Volterra kernel coefficient, k3 is a third order Volterra kernel
coefficient, and 71, n, and n3 are time delays. The use of symmetric kernels throughout

the modeling procedure simplifies the model and reduces the number of data terms in the
data matrix [Ref. 25]. Finally, the amount of memory, g, in the system can be limited to
keep the number of kernel coefficients in each nonlinearity order manageable. Models
with long memories and several orders of nonlinearity require a large number of Volterra
kernel coefficient terms. The foregoing simplifications allow the use of a much reduced
data matrix to calculate the Volterra kernel coefficients. The updated data matrix for non-
linearity order p = 5 and a memory of g = 2 delays is shown in Equation 4.13. Using the
smaller data matrix without the redundant symmetrical terms, the even order nonlinearity
terms and limited memory terms allows the predistorter to be calculated quickly and may

allow periodic updates while the communication system is in operation.

x(n) x(n+1) x(n+2) "
0 x(n) x(n+1)
0 0 x(n)
x(n)x(n)x(n) x(n+ Dx(n+ Dx(n+1) x(n+2)x(n+2)x(n+2)
0 x(n)x(n+ Dx(x+1) x(n+2)x(n+ Dx(n+1)
0 x(n+ )x(n)x(n) x(n+2)x(n+2)x(n+1)
0 x(n)x(n)x(n) x(n+ Dx(n+ Dx(n+1)
X = 0 0 x(n+2)x(n+2)x(n) (4.13)
0 0 x(n+2)x(n)x(n)
0 0 x(n+ Dx(n+ x(n)
0 0 x(n)x(n)x(n+ 1)
0 0 - x(n)x(n)x(n)
0 0 x(n+2)x(n+ 1)x(n)
x(n)5 x(n+ 1)5 x(n+ 2)5
0 x(n+ 1)*x(n) x(n+2) x(n+ 1)
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E. FIXED DATA PREDISTORTER.
The predistorter is determined by solving for the pth order inverse of the HPA
model. The distorted output data emitted by the HPA is used to build the data matrix. The

basic matrix equation to be solved is similar to the matrix equation discussed previously

x=Yg @.14)

where x is a column vector of input data to the HPA, g is a column vector of the Volterra
kernel coefficients of the inverse model, and Y is a matrix of the output of the HPA (but the
input to the model). We need to determine g. Figure 4.2 shows the block schematic used to

develop the inverse model of the HPA’s distortion characteristics.

|| MODEL |

Figure 4.2: High Power Amplifier Model.

The Volterra kernel coefficients for the predistorter are determined by using the
pseudoinverse approach [Ref. 27]. Reordering the equation to solve for the column vector,

g, consisting of the Volterra kernel coefficients
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g=Y x 4.15)

where Y is the data matrix, Y is its pseudoinverse, and x is the data vector. The data vector
is defined by Equation 4.8. The Volterra kernel coefficient vector describes the pth order

inverse model of the HPA and has the form

g1(n-ij+2)
gi(n-i;+1)
81(n”i1)
g(n-ij+2,n-i)+2)
g(n-iy+2,n-iy+1)
g(n-ij+1L,n-iy+2)
g=| &U-arbr-hrl . (4.16)
g(n-ij+2,n-1i,)
gy(n-ij,n-i,+2)
g(n-ij+1,n-1i,)
gy(n-i,n-iy+1)
8y(n-iy, n-iy)
g(n-ij+2,n-iry+2,n-iz+2)

g(n-ij+2,n-ir+1L;n-iz+1)

where g; is a Volterra kernel coefficient. Finally, the data matrix Y is given by
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»(n) yn+1) y(n+2) "
0 y(n) y(n+1)
0 0 y(n)
y(n)y(n)y(n) y(n+ 1)y(n+ Dy(n+1) y(n+2)y(n+2)y(n+2)
0 y(n)y(n+ Dy(x+1) y(r+2)y(n+1)y(n+1)
0 y(n+ Dy(n)y(n)  y(n+2)y(n+2)y(n+1)
0 y(n)y(n)y(n) y(n+1Dy(n+1)y(n+1)
Y = 0 0 y(n+2)y(n+2)y(n) (4.17)
0 0 y(n+2)y(n)y(n)
0 0 y(n+ 1Dy(n+ 1)y(n)
0 0 y(n)y(n)y(n+1)
0 0 y(n)y(n)y(n)
0 0 y(n+2)y(n+ 1)y(n)
y(ny’ y(n+ 1)’ y(n+2)°
|0 y(n + 1)*y(n) ¥ +2)*y(n+1)

This forms the model for the predistorter. The coefficients g; are then used to realize the
predistorter. The modulation scheme’s signal constellation symbol values are processed
through the inverse model to determine the predistorted signal constellation. This constel-
lation can then be used in a table lookup logic circuit to predistort incoming data points in

a QAM system.

- F. ADAPTIVE FILTER PREDISTORTER.

A second method of determining a predistorter is to use a recursive least squares
(RLS) adaptive filtering technique. This technique allows periodic updating of the
predistorter parameters and provides a partial solution for the parameters before a fully
converged solution is obtained. Changes in the operational characteristics of the amplifier
due to temperature, aging of the components, damage or defects in the device, and
variations in the active device’s operating point can be compensated for by the adaptive

algorithm [Refs. 2 and 6]. The fixed Volterra series solution discussed in the Section E
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calculates the predistorter using Saleh’s model of the TWT HPA’s distortion characteristics
as constant. The fixed method does not update the model once it is installed in the
communication system. The performance of the fixed predistorter may suffer if the TWT
HPA'’s operating characteristics change during its operational life. The adaptive filter
overcomes this problem.

The frequency of updating the adaptive algorithm can be varied depending upon the
nature of the device, desired data rate, and the speed of the processor used to calculate the
predistorter updates. In principle, the predistorter can be updated continuously, however,
the time required to update the predistorter can limit the transmission speed if the
predistorter is updated with each point transmitted. To prevent limiting the transmission
speed, the initial predistorter is periodically updated off-line and the coefficients are

inserted into the communication system upon completion of the predistorter’s update.

1. Recursive Least Squares Estimation.

The RLS algorithm updates the tap weights, or filter parameters, recursively as each
data symbol is received into the model. The goal of the algorithm is to minimize the error,
e(n), between the estimated signal output, x(n), and the actual signal output, x(n) [Ref. 28]

e(n) = x(n) - %(n) = x(n) - gH(")Y(n) (4.18)

where g(n) is a column vector of the Volterra kernel coefficients of the inverse model
parameters and y(n) is a column vector of HPA output data. The cost function to be mini-

mized has the form

N -
e(n) = ¥ A" "e(n)e*(n) 4.19)
n=90

where AN is an exponential weighting function, and A is referred to as the fading factor.

The minimization requires that

29



R(n)g(n) = r(n) (4.20)

where R(n) is the correlation matrix of the input data and r(r) is the correlation vector

[Ref. 28]. The RLS algorithm uses the matrix inversion lemma to represent the inverse

correlation matrix P(n) = R! (n) as

_P(n-1)y(m)y" (mP(n- 1)] (4.21)
A+ (m)P(n - 1)y(n) |

1
P(n) = XI:P(I‘! - 1)
where P(n-1) is the inverse correlation matrix of the previous time sample and y(n) is the
data vector defined by Equation 4.25. The RLS algorithm is implemented as follows. The

Kalman gain vector is defined as

k) = —2E=DI®  _ pryyny- 422)

A+ ¥ (n)P(n - 1)y(n)

This recursively calculated Kalman gain vector is used to solve the inverse model as

g(n) = g(n-1)-k(n)e(n) (4.23)

where e(n) is the a posteriori error given by

e(n) = x(n) - yHg(n -1) (4.24)

This error or its squared value is used to determine the convergence behavior of the RLS
algorithm. An example of the convergence of the RLS algorithm toward a predistorter

solution is shown in the learning curve in Figure 4.3. This learning curve, using a
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(p=7,q=1) Volterra series approximation, uses the mean-square error between the original
signal constellation and the signal constellation emitted by the TWT HPA with predistor-
tion. The mean-square error of the learning curve quickly decreases to a value close to that
of the fixed data predistortion method after 1000 symbols [Refs. 19 and 28].
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Figure 4.3: Learning Curve of (p=7,9=1) Adaptive Predistorter, 1000 Symbols.

2. Adaptive Predistorter.

The adaptive RLS algorithm is employed to find the inverse of the TWT HPA’s
distortion characteristics, i.e., to identify the predistorter. The predistorter model’s input
vector, y(n), consists of the odd order Volterra kernel coefficient terms of the model. This

vector, for a fifth order nonlinearity with one delay, is given by
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y(n+1)
y(n)
Y(n+1)
Y(n+1)y(n)
y(n+ 1)y (n)
Y (n) (4.25)
Y(n+1)
¥+ Dy(n)
Y (n+ 1)y%(n)
Y(n+ 1)y’ (n)
y(n+1)y*(n)
¥ (n)

y(n) =

and must be updated with each symbol transmitted by the communication system. This
vector is used in Equations 4.21 through 4.23 until the inverse model produces a predis-
torter which achieves a desired a posteriori error or until a specified number of symbols
has been transmitted. The final model parameter vector, g(n), is employed in a Volterra
series approximation to generate the predistorter. An example of the model parameter vec-

tor, g(n) with a 5th order nonlinearity and 1 memory delay is
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g1(n-1ip)
gi(n-ij+1)
83(n—-iy,n-iyn-is)
gz(n—-ij+1,n-ipn-is)
g3(n-ij+1,n-ip+1,n-is)

gy(n-ij+L,n-ip+1l,n-iz+1)

g(n) = (4.26)

g5(n—il,n—iz,n—i3,n—i4,n—i5)
gs(n—il+1,n—i2,n—i3,n—i4,n—i5)
gs(n-ij+L,n-iyg+1,n-izn-ign-is)
gs(n-i1+1,n—i2+l,n—i3+1,n—i4,n-i5)

gs(n—i1+1,n—i2+l,n—i3+1,n—i4+l,n—i5)

gs(n-—i1+1,n—i2+1,n—i3+1,n—i4+1,n—i5+1)

These inverse model parameter coefficients are then used to determine the predistorter sig-
nal constellation points. The predistorted signal constellation is then implemented in a
table look up logic function.
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V. SIMULATION RESULTS

The preceding chapters deal with the predistorter models and the communication
systems. This chapter focuses on testing the ability of these techniques to determine the
inverse model of the TWT HPA’s nonlinear characteristics, and implement the inverse
model as a predistorter in a digital communication system. The results of these simulations

are contained in the following sections.

A. FIXED PREDISTORTER.

The fixed predistorter was implemented in MATLAB using the algorithm discussed
in Section IV.E. The algorithm builds the data matrix using the HPA’s output signal as the
model’s input in an iterative fashion i.e., a row of the Volterra model’s data matrix with
each iteration of symbol’s transmission. The symbol is shifted into the memory buffer and
the nonlinear data point coefficients are determined using the MATLAB function
“order7.m” (Appendix A contains this function). The length of the vector produced by the
function is dependent upon the number of delays incorporated into the model. The length
of the output vector grows significantly as the nonlinearity order and the memory of the
Volterra series model increases. Table 5.1 shows the number of symmetric terms contained
in the output and Volterra coefficient vectors. Clearly, the coefficients of Volterra
approximations with large nonlinearity orders and/or memory delays quickly :become
unmanageable. Therefore it is necessary to choose a low order, short memory
approximation of the inverse of the distortion characteristics. This low order model will be
used to realize a predistorter that hopefully results in an HPA emitted signal constellation
that closely reproduces the original signal constellation, while retaining a manageable
number of calculations. Simulation results for other problems indicate reasonable
approximations can be obtained with a limited coefficient Volterra series approximation
[Refs. 8, 13, 23, and 24].
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Various predistorter models were determined for different nonlinearity orders and
memory delays. The models will be referred to as (p,q), where p is the nonlinear order of

the Volterra series approximation, and q is the number of memory delays.

Table 5.1: Number of Volterra Coefficients

System Memory No. of
Order Delays Terms
5 1 18
5 2 73
5 3 224
5 4 565
7 1 38
7 2 223
7 3 924

The modeling of the inverse characteristics was investigated by varying the nonlinearity
order and keeping the memory constant at g=1. Each simulation used a data vector with
1000 symbols. The quantity used to judge the performance of the predistorter models is
the mean-square error (MSE), defined as

2
Id -4l

MSE = 7

(5.1

where d are the original signal constellation boints and d’are the corrected signal constel-
lation points emitted by the HPA with predistortion. The simulation results (see Figure
5.1) show that the Volterra series approximations reach a ﬁoint of diminishing returns.The
mean-square error improves as the nonlinearity order of the model increases from p=1 to
p=7, but reaches a minimum at orders p=7 and p=9, and then increases with larger orders
of nonlinearity. The mean-square error may increase at this point due to the increasing

number of Volterra coefficients required to represent the models of higher nonlinearity
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orders. Since the number of symbol points used to determine the predistorter model
remains constant at 1000 symbols and the number of terms in the Volterra coefficient vec-
tor increases as the nonlinearity order increases, the matrix approaches a condition of
being underdetermined. The larger the nonlinearity order of the model, the closer the data
matrix approaches the condition of full rank, followed by the condition of an underdeter-
mined system. This prevents solving the set of equations in a least squares sense. Incorpo-
rating a larger number of symbol points in the data matrix tends to overcome the

underdetermined matrix problem.
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Figure 5.1: Fixed Predistorter Mean-Square Error, Memory Delay g = 1, versus
Nonlinearity Order, 1000 data points.

The selection of the predistorter coefficients implemented in the communication
system simulation was based upon the 5th and 7th order inverse models. Figure 5.2 depicts
the predistorted signal constellation created by the fixed data method’s Volterra
coefficients for a (p=7,g=1) solution. Figure 5.3 depicts the transmitted signal constellation
emitted by the HPA after the original signal constellation is predistorted by the inverse
model of the TWT’s nonlinear characteristics depicted in the signal constellation in Figure
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5.2. The fixed data predistorter in Figure 5.2 results in a corrected signal constellation
emitted by the HPA that has a MSE of 0.0002479.
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Figure 5.3: Corrected TWT HPA Signal Constellation Output with Predistortion
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Even with a relatively low order and low memory, the number of coefficients and
calculations required to solve a Volterra series approximation can get very large. Methods
to further reduce the number of coefficients are essential to rapidly determine a predistorter
model which can be employed in near real-time. Here we used a simple approach to reduce
the number of coefficients. First the coefficients of a “full model” are determined. The
magnitude of the coefficients are then plotted to determine their magnitude with respect to
each other. The coefficients which have the greatest magnitude, therefore having the
greatest impact on the approximation, are retained, and the remainder are deleted. This
ensured that a pth order approximation had terms of the 1st, 3rd, 5th, ..., and pth order
within the Volterra kernel. Figure 5.4 depicts a sample of the 5th order terms of a (p=7,4=1)
Volterra series approximation. The coefficients chosen to be retained in this “limited
coefficient model” were x(Dx(Dx(Dx*(x*(1), x(Dx(1)x)x*(1)x*(2), and
x(Dx(2)x(2)x*(1)x*(1). The coefficients which are retained are not known a priori and are
selected only on the basis of their magnitude with respect to the other coefficients in the
model. No analysis was performed to determine if these coefficients dominate the models

in general.
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Figure 5.4: 5th Order Volterra Kernel Coefficients using a (p=7,g=1) Fixed Volterra Series
Predistorter.
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The limited coefficient Volterra series approximation was used to form the limited
coefficient predistorter model. This limited coefficient predistorter’s signal constellation is
shown in Figure 5.5. When this predistorted signal constellation is input into the TWT
HPA, the resulting corrected signal constellation output from the TWT HPA is shown in
Figure 5.6. This limited coefficient fixed data predistorter results in a corrected signal
constellation emitted by the HPA that has a mean-square error of 0.0003946. This is close
to the full coefficient solution, which has an MSE of 0.0002479. The limited coefficient
predistorter model was therefore judged to be effective in implementing the predistortion
with considerably less computation [Refs. 8 and 23].
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Figure 5.5: Fixed Predistorter, Nonlinearity Order p = 7, Memory g = 1, using the limited
coefficient Volterra Approximation.
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Figure 5.6: High Power Amplifier Output After Predistortion Using the Limited
Coefficient (p=7,g=1) Predisorter.

B. ADAPTIVE PREDISTORTER.

The adaptive predistorter was determined using the RLS method discussed in
Chapter IV. The algorithm was initialized with A= 0.995 and O = 15 to allow rapid
convergence. The predistorters generated by the RLS method have a similar signal
constellation shape as the fixed predistorter _model. The RLS algorithm required 500 to
1000 symbol points, depending on the memory and nonlinearity order of the system, to
achieve a mean-square error similar to that of the fixed method. The convergence of the
TWT HPA’s emitted signal constellation, when prédistorted with the inverse model
determined with the RLS algorithm, is shown in the learning curve in Figure 4.3. The RLS
algorithm was continued only for a sufficient number of symbol points to achieve a mean-
square error comparable to that of the fixed data method. Figure 5.7 shows the predistorted

signal constellation determined with an RLS (p=7,4=1) Volterra approximation to model
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the inverse nonlinear characteristics. This predistorted signal constellation is similar to the
fixed predistorted signal constellation in Figure 5.3. When this predistorted signal
constellation is input to the TWT HPA, the corrected signal constellation yields a mean-
square error of 0.000554. The corrected signal constellation is shown in Figure 5.8.
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Figure 5.7: Adaptive Predistortion Signal Constellation using (p=7,g=1) RLS Predistorter.
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Quadrature

Figure 5.8: High Power Amplifier Output After Predistortion Using the Adaptive
(p=7,9=1) Predistorter. '

C. COMMUNICATION SYSTEM.

1. Modulator.

The modulator was designed to implement the quadrature amplitude modulation
communication system discussed in Chapter III. The signal constellation point is
predistorted in accordance with the predistorter model and prepared for transmission. The
modulator (see Figure 5.9) employs a table lookup function to convert the L bits of binary
data into a complex number representing a unique point in the signal constellation.
Incorporating the predistorter model’s signal constellation in the table lookup function
eliminates the need to perform the predistortion as a separate step. A logic device breaks

the signal constellation point into its real and imaginary parts, represented by
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sp(t) = Ap+i-Ag (5.2)

where s,(2) is the complex symbol, A; is the predistorted voltage level assigned to the
inphase bit stream, and A is the predistorted voltage level assigned to the quadrature bit
stream. The real component, Ay, is routed to the inphase branch and the imaginary compo-
nent, Ag, is sent to the quadrature branch of the modulator. The predistorted voltage levels

are shaped by the pulse generator into a rectangular waveform to scale it to the transmitted
voltage level. The inphase and quadrature signals after the pulse generators are

s(t)=A;g(t-T) (5.3)

and

s,(1) = Agg(t-T). (5.4)

where g(t-T) is the rectangular pulse. The scaled rectangular pulse is then mixed with the

carrier frequency resulting in the two modulated waveforms

$i(8) = Agg(t—T)cos(2nf 1) (5.5)
and
smq(t) = AQg(t—T)sin(anct). (5.6)
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The carrier frequency used in all of the simulations is 455 kHz, a common intermediate
frequency in superheterodyne receivers. Each symbol was transmitted for 10 complete
periods of 10 samples per period, i.e., a total of 100 samples per symbol. Additive white
Gaussian noise (AWGN) was included in each channel to simulate the effect of thermal
noise in the system. The output of each branch was then summed to produce a real valued

output for transmission. The final waveform is

s(z) = A;g(t-T)cos(2nf 1) - Apg(t - T)sin(2nf ). 6.7

The HPA model was simulated using Saleh’s model at baseband (see Section IL.B)
since the analytical expressions are only valid at baseband, not at the modulated RF
frequencies. The HPA is placed after the predistorter as shown in Figure 5.9.

Binary o Pre- »| HPA
Data distorter
——» PULSE \V/
GENERATOR
+
Table _ cosot o0 (]

— | Lookup

PULSE
™ GENERATOR

sin ot n(t)

Figure 5.9: Simulated Communication System Modulator.
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2, Demodulator.

The demodulator used in this simulation is greatly simplified from that of an actual
implementation. The simplifications were made to focus the results on the effectiveness of
the predistorter, not the demodulator. Several assumptions were made to achieve this
simplification, including:

a. No channel loss, distortions, or fading.

b. Perfect synchronization ‘of the modulator and the demodulator, in both phase and
start of symbol transmission.

c. No Noise (noise added to the system at the modulator only).

The demodulator is a standard quadrature digital demodulator (see Figure 3.3)
designed to detect the received signal

r(t) = A'jg(t-T)cos(2nf 1) - A'Qg(t - T)sin(2nf 1) + n(t) (5.8)

where A7 is the received inphase voltage level, Ay is the received quadrature voltage

level, and n(t) is additive noise. The received signal, r(2), is input into both the inphase and
quadrature branches and mixed with the local oscillator. The perfect synchronization
assumption ensures that the signal output from the mixer consists of only the dc and the

2f, components of the modulated waveform, plus the noise injected into the system. The

output of the branch mixers is

r'(e = A'I(:,Zl- + %cos(41tfct)) +n'(1) 5.9
and
' \ 1 1 '
ryt) = A Q(— 5+ icos(4nfct)) +1' (1) (5.10)
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where n(t) and n (1) are the processed noise components. The signals of both branches
are passed through a summing device, equivalent to an analog integrator, which has a
transfer characteristic similar to that of a low pass filter. The summer outputs are sampled
at the end of the symbol’s transmission period as the received signal component. The

branch summer outputs at the sampling time, #,, are

r'(t,) = éz-{ +n"(z,) (.11)

and

A
r'g(t,) = TQ +n"(1,) (5.12)

where 7 %(1,) and n(1,) are the noise components. The summers of the two branches out-
put the threshold levels to the detection logic to determine which symbol was received.
The logic device chooses the closest table value to the transmission value for each
branches. The received symbol is then created from the two branches and converted into
its binary form. The L bits composing the symbol can then be serially output into the host
receiver’s system.

The symbol error rate (SER) is determined as follows for both fixed and adaptive
predistortion techniques. The received symbol is compared with the transmitted symbol.: if
the received symbol does not match the traﬂsmitted symbol, it is considered an error. A
running total of the errors is maintained. Upon complgtion of the simulation, the probability

of symbol error, Py, is estimated as

(5.13)
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where k is the number of errors and N is the total number of symbols transmitted. The
SERs were determined for a range of signal-to-noise ratios to obtain the system’s perfor-
mance trends in terms of the SER versus SNR curves and compare them to the theoretical
curve for 64-QAM.

The difference between the two predistorters incorporated into the communication
system is the updating of the inverse model in the adaptive method. The fixed predistorter
communication system is not updated during its operation. The adaptive predistorter
communication system can be updated continuously but in this thesis it is updated
periodically, not continuously, to save calculation time. The update is performed by
transmitting data in blocks of 10000 symbols each. The last 1000 symbols of the 10000
symbol blocks are stored in a buffer for use in updating the signal constellation of the
predistorter off-line. When the last symbol of the block is transmitted, the adaptive RLS
algorithm is employed to update the predistorter using the (p=7,g=1) inverse model with
the buffer serving as the symbol data. The updated predistorter coefficients are then
inserted into the communication system’s (p=7,g=1) predistorter and the next block of

symbols is transmitted.

3. Signal-to-Noise Ratio.
The signal-to-noise ratio (SNR) is determined by

=

SNR = % (5.14)

2

Q

where P,, is the average signal power

_ )’ +(4p)’

Pav 2

(5.15)

and N,, is the noise power. The noise power of the communication system is the sum of the

48




noise in the two branches of the modulator. The noise was added to each branch as close to

the end of the modulator as possible, simulating the thermal noise in the system. Adding
complex noise at baseband would be equivalent. The measured probability of symbol error
versus SNR was used as the quantity to evaluate the performance of the communication
system simulations. The MATLAB computer code implementing these simulations is in
Appendix D and Appendix E. In these simulations, the SNR acted as a scale factor for the
noise power generated by a random vector. This noise was added to the transmitted signal
to determine the symbol detection and decoding performance of the communication sys-
tem [Ref. 11].

D. COMMUNICATION SYSTEM PERFORMANCE.

The performance of the communication system in terms of error probability is
shown in Figure 5.10. These simulations involved transmitting 100,000 symbols through
the communication system. The ideal theoretical performance of 64-QAM is depicted by |
the solid curve highlighted by asterisks. This is the best possible decision performance a
64-QAM system may achieve under ideal conditions. A total of 1000 symbols were used
to compute the inverse models to realize the fixed data predistorters. The fixed data
predistorter systems with 7th order (p=7,q=1) Volterra series approximations are the best
performing systems analyzed in this thesis. As can be seen, the 7th order system (p=7,4=1)
with a complete set of Volterra kernel coefficients performs slightly better than the 7th
order system with limited coefficients. The limited coefficient predistorter requires less
than 0.5 dB more power than the complete coefficient fixed predistorter to achieve a
symbol error probability of 10 This allowé a slightly higher transmitting power to be
traded off for a much reduced computation requirement. The 7th order (p=7,g=1) adaptive
predistorter required approximately 5dB more power than the ideal 64-QAM system, 2.5
dB more than the (p=7,9=1) complete coefficient fixed data predistorter, to achieve a
symbol error rate of 10™. The adaptive algorithm used parameters of d=15 and A=0.995 to
initialize the algorithm and identify the memory dependence of the model. The RLS
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method required approximately 1000 symbol iterations to produce an initial inverse model
which yielded a corrected signal constellation with a mean-square error of 0.0007. Further
updates to the predistorter were conducted as described in Section C.2. The 5th order
(p=5.g=1) predistorter demonstrated the poorest performance of the predistorters
implemented. The (p=5,g=1) predistorter required approximately 8.5 dB more pbwer than
the ideal 64-QAM system and 5 dB more power than the (p=7,g=1) fixed data predistorters

to achieve a symbol error rate of 103,
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Figure 5.10: Communication System Performance; 100,000 Symbols Transmitted.
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VI. CONCLUSIONS

A.  CONCLUSIONS.

This thesis discusses two methods of determining a predistorter to correct the
nonlinear distortion of the traveling wave tube high power amplifier. Specifically, Volterra
series approximation techniques are developed using fixed and adaptive data modeling
techniques. These techniques were used to determine an inverse model of the TWT HPA’s
nonlinear distortion characteristics which was then used to predistort the modulation
scheme’s signal constellation. The predistorted signal constellation formed the basis of a
table lookup logic function for inclusion in the modulation scheme. The predistortion of the
signal constellation’s data symbols results in a transmitted signal that is similar to the
original signal constellation’s data points. The following conclusions can be made from the
two predistortion techniques and their employment in the communication system
simulation.

The Volterra series approximation techniques successfully modeled the inverse of
the TWT’s nonlinear distortion characteristics. The use of these inverse models as
predistorters results in the high power amplifier’s corrected output signal constellation
being within the appropriate detection regions of the symbol decoder. The 7th order fixed
data approximations generated the predistorter models with the best correction
performance. The mean-square error between the 7th order fixed data approximation’s
corrected constellation and the original signal constellation was 0.000247. The 7th order
adaptive approximation mean-square error was 0.000554 and the 5th order fixed data
approximation was 0.000634.

The predistorters lowered the probability of symbol error in the 64-QAM
communication system to levels comparable to the ideal 64-QAM communication system’s
performance. The 7th order fixed data predistorter required the lowest signal-to-noise ratio

of the predistorters implemented in the 64-QAM communication system. The 7th order
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fixed data predistorter required 2.5 dB more power than the ideal 64-QAM system to

achieve a symbol error rate of 103, The 7th order adaptive predistorter required 2.5 dB and
the 5th order fixed data predistorter 5 dB more power than the 7th order fixed data

predistorter to achieve a symbol error rate of 1075

The failure to employ a predistortion method requires the receiver to decode the
distorted signal. The conventional QAM receiver used in this manner proved incapable of
achieving a satisfactory symbol error rate. The use of the predistorters would allow higher

order modulation schemes to be employed in modern communication systems to transmit

data at high transmission rates while conserving bandwidth.

B. FUTURE WORK.

The results reported here provide a starting point for research into digital
predistortion techniques to allow bandwidth efficient modulation schemes to be employed
in high data rate wireless transmitters. The equations for the nonlinear distortion
characteristics of the TWT HPA provide an excellent and recognized analytical model to
determine the effects of HPAs on bandwidth efficient modulation schemes. The
predistortion methods presented in this thesis are possible implementations to correct the

nonlinear distortion of the 64-QAM signals.

~ There are many areas which provide excellent avenues for future investigation into
predistortion techniques. One area is implementing the communication system without
perfect synchronization to determine the effect of changing channel conditions on the
predistorter. This will help determine if fading and other detrimental conditions cause the
predistorters to be ineffective. A second area for future investigation is to implement the
predistorters in C code. This will allow the predistorter to be operated in a 64-QAM
communication system using digital signal processing (DSP) chips. The performance of the
predistorters could then be evaluated under actual operating conditions for future fielding

in communication systems.

52



APPENDIX A. MATLAB COMPUTER CODE FOR DETERMINING THE

NONLINEAR DATA COEFFICIENTS.

function [y,11,i3,i5,i7] = order7(sr,m)

% function [y,i1,i3,i5,i7] = order7(sr,m)
%
% This function computes the first, third, fifth,and seventh
% order Volterra Series nonlinear data coefficients for a model.
% The coefficients computed do not duplicate symmetric
% coefficients, due to the model being time-invariant,
% to reduce the size of the resulting model and number
% of calculations required.
%
% Input: Shift register values and the model memory.
%
% Output: y, acolumn vector with the computed nonlinear data
% coefficients for the current shift register states and the
% number of data terms in the vector y. These are used in the
% script files which call order7.m.
% Initialize the counter for the number of terms.
i=0;
% Calculate the first order terms.
fork=1m
i=i+l;
y(@,1) = sr(k);
end
il=i;

% Calculate the third order terms.

fork=1:m
forl =k:m
forn=1m
i=i+l;
y(i,1) = sr(k)*sr(l)*conj(sr(n));
end
end
end
i3=i;
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%  Calculate the fifth order terms.

fork=1m
forl=k:m
forn=1m
foro=1m
forp=om
i=1+1;
y(i,1) = sr(k)*sr(1)*sr(n)*conj(sr(0))*conj(sr(p));
end
end
end
end
end
15=i;

% Calculate the seventh order terms.

forkl =1:m
fork2 =kl:m
fork3=k2:m
for k4 =k3:m
forkS=1:m
for k6 =k5:m
for k7 =k6:m
i=i+l1;
y(i,1) = sr(k1)*sr(k2)*sr(k3)*sr(k4)*conj(sr(k5))*conj(sr(k6))*conj(sr(k7));
end
end
end
end
end
end
end
i7=i4;

54




APPENDIX B. SUPPORTING MATLAB FUNCTIONS CALLED TO
DETERMINE THE PREDISTORTER MODEL’S COEFFICIENTS.

1. FUNCTION HPA.M
function c2=hpa(c,ampparam,phparam);

% function c2=hpa(c,ampparam,phparam)

% This function computes the nonlinear distortion caused by the Travelling Wave Tube

% high power amplifier. The function is complex and determines the Amplitude-to-Amplitude
% (AM-to-AM) and Amplitude-to-Phase (AM-to-PM) distortion.

%

% Input: Complex symbol constellation point and high power amplifier characteristic

% coefficients, if different from the default coefficients.

% _

% Output: Distorted symbol constellation point. (Complex value)

%
% This function was written by LCDR Bruce Watkins, NCCOSC RDT&E DIV, San Diego,CA

r=abs(c);
a=angle(c);

% Default HPA characteristic coefficients.

al=1.9945;

b1=0.9945;

a2=2.5293;

b2=2.8168;

if nargin==3
al=ampparam(1);
a2=ampparam(2);
a2=phparam(1);
b2=phparam(2);

end

%  Calculate the amplitude distortion.
A=al*r./(1+b1*r.A2);

%  Calculate the phase distortion.
P=a2*r.A2 [(1+b2%1.A2);

% Increment the phase to reflect the phase distortion.
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a=a+P;
% Determine the distorted symbol to be output.

c2=A.*cos(a)+i*A.*sin(a);

2. SCRIPTFILE ASPECTIM.

%  Script File aspectl.m.

% This script file changes the axes of figures to a square appearance for uniform plotting of
% signal constellations. The script is called by both the fixed and adaptive predistorter

% modelling techniques.

%

% Input: None.
%

% Output:. None.
%

% This function was written by LCDR Bruce Watkins, NCCOSC RDT&E DIV, San Diego,CA

% this script sets the aspect ratio of the graphics figure to 1:1
%h1=[1 1];

axis([-11-11])

axis('square’)

%set(gca, AspectRatio’,h1');



APPENDIX C. MATLAB COMPUTER CODE CALCULATING THE
FIXED PREDISTORTER MODEL.

1.  SCRIPT FILE F7.M

% fim

%
%  This script file calculates the fixed predistorter model for a seventh order nonlinearity

%  Volterra Series approximation. The script file serves mainly as a shell to call the functions
%  which perform the calculations and output the predistorter model and the signal constellation
% emitted by the high power amplifier. The predistorter model determined is an inverse of

% the nonlinear distortion characteristics of the traveling wave tube high power amplifier.

%

% Input: None.

%
% Output: Figures with the predistorter model and the HPA’s emitted signal constellation.

clear
% Identify the memory of the system. ord = memory delays + 1.
ord =2;

% Load the Quadrature Amplitude Modulation signal constellation file and identify the
% constellation to be used.

load gam
xi = c64;

% Transform the signal constellation from a matrix to a vector.

x=reshape(xi, 1,64);

% Identify the number of data points to be useél to determine the predistorter model.
points = 1001;

% Call the function fix7.m. This function performs the actual calculations to determine the
% predistorter model.

[distdata,yyv,gl,g3,25,87,11,i3,i5,i7] = fix7(ord,x,points)
% “Transmit” the predistorter model through the high power amplifier.
yv = hpa(distdata);

% Reshape the vectors into 8 x 8 matrices for plotting.
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yyv=reshape(yv,8,8);
dd=reshape(distdata,8,8);

% Calculate the mean square error of the resulting signal constellation emitted from the
% high power amplifier.

se = sum(sum(abs(yyv-conj(xi)).A2));sx=size(xi);
msefinal=se/(sx(1)*sx(2));

% Plot the results.
figure(1), orient tall
% Plot the predistorter model.

subplot(211)

plot(distdata,'0"), hold on,plot(xi,":"),plot(rot90(xi),":"),plot(dd,"-"),
plot(rot90(dd),-"),aspect1

title(['Nonlinearity order = ',num2str(ord-1),', Data points = ',num2str(points)])

% Plot the emitted signal constellation output by the high power amplifier.

subplot(212)

plot(yyv,'0), hold on,plot(xi,""),plot(rot90(xi),":"),plot(yyv,-)
plot(rot90(yyv),'-'),aspectl

title(('R7.m, HPA Output, MSE = ',num2str(msefinal)])

2.  FUNCTION FIX7.M.

function [distdata,yyv,g1,g3,85,7,11,i3,i5,i7] = fix7(ord,x,points)

% function [distdata,yyv,g1,g3,25,87,11,i3,i5,i7] = fix7(ord,x,points)

%

% This function calculates the inverse of the nonlinear distortion caused by high power
%  amplifiers using a fixed Volterra Series approximation. The inverse model calculated
% is used to create a predistorter to correct the amplifier’s distortion. This function is
% called by the script file f7.m. It in turn calls the function order7.m to determine the
% nonlinear data terms used to build the data matrix used in the solution of the Volterra
% kernel coefficients. The Volterra kernel coefficients are solved using a Least Squares

% technique.

%

% Input: The memory of the system (ord), the signal constellation in vector form (x), and
Yo the number of data points to be used in the Least Squares solution..

%

% Output: The predistorter model in vector form (distdata), the Volterra kernel coefficients
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%o (g1, g3, g5, and g7), and the counters for the number of nonlinearity terms
% (i1, i3, i5, and i7).
%

% Generate the random vector of data points to be used in the Least Squares solution.
ra=rand(1,points);d=zeros(1,points);

% Establish a table and assign the random number vector’s elements to a point in the
% signal constellation.

TAB = [linspace(0,1,64)' (1:64)'];

zz = fix(table1(TAB,ra));

d =x(zz);

% Initialize a shift register with the number of states equal to ord.
sr =d(1:ord)

% Simulate the distortion using Saleh's equations of the data and the signal constellation.

ysaleh = hpa(conj(x));
ysalehd = hpa(conj(d'));

% Create counters for the length of the data and the signal constellation.

[m n] = size(ysalehd)
[nx mx] = size(x);

% Build the nonlinear data matrix, X, by shifting in the data. One column for each data point.
fork=1mm
sr = [ysalehd(k) sr(1,1:0rd-1)];
%  Call the function order7.m to build a row of the data matrix.
[.11,i3,i5,i7] = order7(sr,ord); |
xmat(k,:) = conj(y');
end
% Determine the pseudoinverse of the nonlinear data matrix.
Xinv = inv(xmat'*xmat)*xmat';

% Solve for the G Kernel coefficients. These are the Volterra Series coefficients to
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% approximate the inverse model of the high power amplifier’s distortion characteristics.
g = Xinv * conj(d’);

% Create an index of the size of the Volterra kernal coefficient matrix.

[n1 m1] = size(g);

% Organize into the g coefficient vectors. One vector for each order of nonlinearity.

gl =(g(1:0rd));

g3 =[g(i1+1:i3)];
g5 =[g(i3+1:i5)];
g7 = [g(i5+1:i7)];

% Simulate the predistortion using the Volterra Series.
% Reinitialize the shift register to input the QAM signal constellation.

r = zeros(1,ord);
yv = zeros(1,m);

% Iteratively shift in each point of the signal constellation.

fork=1:64
r = [x(k) r(1,1:0rd-1)];

% Create the nonlinearity data matrix vector, called rworking in this call.

[ rworking,il,i3,i5,i7] = order7(r,ord);

% Establish counters for each nonlinearity order.
yl1=0;y3=0;y5=0;y7 =0;

%  Calculate the first order terms.

rl =rworking(1:ord);
yl =rl"*gl;

% Calculate the third order terms.
r3 =rworking(il+1:i3);
y3 =13"* g3;

% Calculate the fifth order terms.

60




%

%
%
%

15 = rworking(i3+1:i5);
y5 =15 *g5;

Calculate the seventh order terms.

17 = rworking(i5+1:17);
y7 =17 *g7,

Calculate the distorter data term for the signal constellation using the first through seventh
order nonlinearity terms. This is for only one signal constellation point. One iteration
must be performed for each point in the signal constellation.

distdata(1,k) =yl +y3 +y5 +y7;

end
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APPENDIX D. MATLAB COMPUTER CODE FOR DETERMINING THE
PERFORMANCE OF A PREDISTORTER MODEL.

1.  SCRIPT FIM1M.

% Script f/ml.m

%

% This script file simulates a 64 QAM communications system to determine the effectiveness
% of a predistorter model. The predistorter is employed as a table look up function and is

% calculated separately.

%

% Input: Predistorter model loaded from a .mat file.

%

% Output: Performance curve, Probability of symbol error versus Signal to Noise Ratio (SNR),
% in vector and graphical form.

%

% Load the predistorter.
load f7m3

% Reset the seed of the random number generator to employ Monte Carlo principles in
% the system performance.

rand(‘seed',sum(100*clock));

%  Generate vector of the SNR values to be evaluated.
vec = 2.5:2.5:35;

% Initialize the system parameters. Power of a symbol.

power = .4286*50;
Pb_vec = zeros(1,length(vec)); % Probability of symbol error.

L=6; % Number of bits per symbol.

a=1; % Amplitude of symbol power.

fc = 455000;fs = 4550000; % Carrier frequency, Sampling frequency.

k = 100000; % Number of symbols to transmit.

w = 2*pi*fc/fs; % Omega.

noperiods = 10; % Number of periods a symbol is transmitted.
nosamples = 10; % Number of samples per period a symbol is transmitted.
n = 0:noperiods*nosamples-1; % Vector for sampling times.

distdatal = reshape(distdata,8,8); % Transform predistorter vector to an 8 x 8 matrix.
distdatal = flipud(distdatal); % Rearrange to proper form.

bl =firl(5,.2); % FIR filter coefficients to remove 2fc components.

% Iteratively determine performance for each SNR level. Each level transmits k symbols
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% and determines symbol error rate.
for num=1:length(vec)

% Set error to zero for each SNR.
error = 0;
yyv = conj(yyv);

% Transmit the symbols one at a time.
forl=1k

%  Generate the bit stream for a symbol.
d =rand(1,L);d =d<.5;

%  Shift in L bits and separate into the in-phase and quadrature components.
inphase = d(1:3);quad = d(4:6);

% Determine the codeword of the symbol. The values are real.

xin = table(inphase);
xq = table(quad);

% Build the QAM symbol.
sym = xin + i*xq;

%  Predistort the symbol using the predistorter loaded earlier in a table look up form.
TABh = [(-.707:.202:.707)' (1:8)'];
TABv = [(.707:-.202:-.707)" (1:8)'];
hor = floor(table1(TABh,real(sym)));
vert = floor(table1(TABv,imag(sym)));

% Build the final predistorted symbol to be transmitted.
distsym = distdatal(vert,hor);

% Send the symbol through the HPA to simulate the distortion.
output=hpa(distsym);

%  Pulse shape the symbol. Treat each branch independently.
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%o

%

%

%

%

%

%

%

%

xipre = real(output).*ones(1,noperiods*nosamples);
xqpre = imag(output).*ones(1,noperiods*nosamples);
Modulate the signal.

xipreg= xipre.*cos(w.*n);
xqgpreg= xqgpre.*sin(w.*n);
Add AWGN.
SNR_dB = vec(num);
snr = 10A(SNR_dB/10);
noise_var = power/(2*snr);
xipreg = xipreg + sqrt(noise_var/2).*randn(1,length(xipreg));
xqpreg = xqpreg + sqrt(noise_var/2).*randn(1,length(xipreg));
Sum the two branches of the QAM transmitter and generate the transmitted signal.
outputl = xipreg-xqpreg;
Signal is received and now demodulated.
rec = outputl;

Mix the received signal through both branches to remove the orthogonal signal.

yc = rec.*cos(w.*n);
ys = rec.*sin(w.*n);

Filter the 2fc component.

yefilt = filter(b1,1,yc);
ysfilt = filter(b1,1,ys);

Send the signal through the summer.

ycth = (2/length(ycfilt))*sum(ycfilt);
ysth = (2/length(ysfilt))*sum(ysfilt);

Build the received signal into the received symbol for detection.
y = ycth - ysth*i; %Negative to account for the change in threshold level.
Estimate the symbol transmitted using a “choose the largest strategy”.

sest = mgam_det(y,L,a);
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% Determine if an error has been made. If so, track the error.

if sest ~= sym,
error = error + 1;
end
end

% Determine the final probability of symbol error for the SNR value used.
Pb_vec(num) = error/k;

end

%  Save the probability of symbol error and SNR vectors.

save f7m1d Pb_vec vec

2. FUNCTION TABLE.M.
function y = table(x)

% function y = table(x)

%o

% This function serves as a lookup table used by both the

% in phase and quadrature phase branches to logically determine
% the amplitudes to associate with a given bit stream.

%

% Input: Areal vector with 3 bit values.

%%

% Output: Amplitude value assigned to the bit stream by the gray code.
%

[m,n]=size(x);

for k=1:m

if x(k,:) ==[000], y(k,1) =0.101;
elseif x(k,:) == [0 0 1], y(k,1) =-0.101;
elseif x(k,:) ==[0 1 0], y(k,1) = -0.505;
elseif x(k,:) ==[0 1 1], y(k,1) = -0.303;
elseif x(k,:) ==[1 0 0], y(k,1) = 0.303;

elseif x(k,:) ==[1 0 1], y(k,1) = 0.505;

]



elseif x(k,:) ==[1 1 0], y(k,1) = -0.707;
elseif x(k,:) ==[1 1 1], y(k,1) =0.707;

end
end

3. FUNCTION MQAM_DETM

This function was written by Roy Axford, of NCCOSC, and provided by LCDR Bruce
Watkins, of NCCOSC, San Diego, CA.

function [y] = mqam_det(x,L,A)

%***************************************************************************

% MQAM_DET - Maximum-Likelihood M-ary QAM Symbol Detector.

% (M = 2AL where L = no. of bits/symbol)
%
% INPUT:

% x - Nx1 vector of (noisy) M-QAM symbols (complex numbers)
% L - bits/symbol (= log2(M) where M is the M in M-ary)

% There are M = 2AL symbols (points) in the constellation.

% A - amplitude parameter (real valued scalar)

%

% Note: 'L' and 'A' define the constellation that was used by the

%o transmitter as embodied in 'mqam_src.m' or 'mqam_enc.m'.

% However, here it will often be that A = 1. The equalizer

%o preceding 'mgam_det.m' will adjust it gain appropriately

% during the training period. If the equalizer is blind, it

% will also adjust its gain such that the dispersion (a second
% and fourth moment related quantity) is consistent with the
% constellation being transmitted, if known, or ... we'll see.
% RAA 8:29AM 12/17/92

%

%

% OUTPUT:

% y - Nx1 vector of M-QAM symbol decisions (complex numbers)
%

% ALGORITHM:

%

% Constructs constellation points (symbols) in the same way that

% 'mqam_src.m' and 'mgam_enc.m' do.

%

% Detection Criterion: Maximum-Likelihood Slicer. [1]

% Each element of 'x' is mapped to the closest
% (Euclidean distance) element of 'symbol'.
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%o .

% I I

% Noisy QAM Symbol(s) ---> | mgam_det.m | ---> QAM Symbol Decision(s)
% I |

%

%o

% M-FUNCTIONS CALLED BY MQAM_DETM:

% none

%

% REFERENCES:

% [1] C.M. Thomas, M.Y. Weidner, and S.H. Durrani, "Digital Amplitude-
% Phase Keying with M-ary Alphabets", IEEE Trans. Commun., vol. COM-22,
% no. 2, pp. 168-180, Feb. 1974.

%

% [2] R.D. Gitlin, J.F. Hayes and S.B. Weinstein, "Data Communications

% Principles”, Plenum Press, 1992.

%

% [3] J.G. Proakis, "Digital Communications, 2nd Ed.", McGraw-Hill, 1989.
%

% [4] G.D. Forney et al., "Efficient Modulation for Band-Limited Channels,"
% IEEE Journ. on Selected Areas in Commun., vol. SAC-2, no. 5,

% pp. 632-647, Sep. 1984.

%

% [5] M. Stojanovic, J. Catipovic, and J.G. Proakis, "An Algorithm for

%  Multichannel Coherent Digital Communications Over Long Range

%  Underwater Acoustic Telemetry Channels," Proc. IEEE Oceans-'92.

%

% [6] R.L. Cupo and R.D. Gitlin, "Adaptive Carrier Recovery Systems for
% Digital Data Communications Receivers," IEEE Journ. on Selected

%  Areas in Communications, vol. 7, no. 9, pp. 1328-1339, Dec. 1989.

%

% Written by: Roy A. Axford (axfordra@manta.nosc.mil)

% Last Update: 4:50PM 12/17/92

%

% Usage: y = mqam_det(x,L,A)

% where: x=input vector, L=log2(M) bits/symbol, A=amplitude factor

% (L=3 ->M=8) (L=4 ->M=16) (L=5->M=32)

% (L=6 -> M=64) (L=7 -> M=128) (L=8 -> M=256)

96***************************************************************************

95***************************************************************************

% input syntax checking
if (nargin ~= 3)
error('Wrong number of inputs to m-function mgam_det. It wants 3.")

end
fL~=3)&L~=4)&L~=5&L~=6)&L~=7)&(L~=8),
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error('L restricted to 3, 4, 5, 6, 7 or 8 in m-function mqam_det.")
end
if (nargout ~= 1)
error('Wrong number of outputs asked of m-function mgam_det. It gives 1.")
end
%

96***************************************************************************

% initialize some vectors

j=saqrt(-1);

N = length(x); % numbér of input noisy symbols (OK if N == 1)
y = zeros(N,1); % column vector for the QAM symbol decisions
x_bits = zeros(1,L); % row vector "window" on x for bit groups

%

95***************************************************************************

% "L-specific" sections of code that build the appropriate constellation.
96***************************************************************************
%
% +++ Begin 8-QAM part
A
%
if L == 3, % 8-QAM (See fig. 3 of [4], or fig. 5.33 on p. 342 of [2].
%o This particular constellation was used in an
%o experimental underwater acoustic digital comm study
%o reported in [5].)
% Note : The 999's are just place holders. It is highly
%o unlikely that a noisy symbol would be closer to
%0 A*999 than to one of the actual constellation points.
%o
symbol=A* 999 999 j*3 999 999
999 -14*1 999 14*1  999;
-3 999 999 999  3;
999 -1-*1 999 1-j*1 999;
999 999 -*3 999 999];
%
%
% +++ End 8-QAM part
e e e e e B B B S B B o B B o B B B B o
%
% +++ Begin 16-QAM part
I e L e e e e e B L B B B B o o R
%
elseif L == 4, % 16-QAM
%o
symbol = A *[ -3+j*3 -1+j*3 1+*3 3+j*3;
-34*1 -14*1 14§*1 345*1;
-3-j*1 -1-5*1 1-j*1 3-j*1;
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-3-j*3 -1-5*3 1-j*3 3-*3];
%
%
% +++ End 16-QAM part
B I o I e B o T L B o B B o O o o o o o e
%
% +++ Begin 32-QAM part
H+H—H++H—l++{—+—i—¥H—++F+i—H+4+H++H—H+F++—H—I—H+HH%
elseif L == 5, % 32-QAM "Cross" as in fig. 5.4.9 on p.498 of [3].
%
symbol = A*¥[ 999 -3+*5 -14*5 1+*5 3+*5 999;
-5+j*3 -34j*3 -145%3 14§*3 34j*3 54§*3;
S54j*1 -345%1 -145%1 145*1 345*1 545%1;
-5-j*1 -3-5%1 -1-5%1 1-5*1 3-*1 5-3*1;
-5-j*3 -3-j*3 -1-j*3 1-j*%3 3-j*3 5-5*3;
999 -3-j*5 -1-j*5 1-j*5 3-j%5 999 ];
%
% NOTE: The (1,1), (1,6), (6,1) and (6,6) elements of 'symbol'
% are not used. (the 999's in the corners
%
% +++ End 32-QAM part
B B B I e B 0 B o B o o o o o o o o
%o
% +++ Begin 64-QAM part
++++++++ - e et
%
elseif L == 6, % 64-QAM.
%o
symbol = zeros(8,8);
i=0;
for Rea = -.707:.202:.707
i=i+1;
q=0;
for Ima = .707:-.202:-.707
q=q+1
symbol(q,i) = Rea + j*Ima; % This might look funny because the
% quadrature coordinate 'q' corresponds
% to a row which is the first index.
end
end
symbol = A.*symbol;
%o
%
% +++ End 64-QAM part
++++++ -

%
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% +++ Begin 128-QAM part
A
%
elseif L == 7, % 128-QAM. (See fig. 5.4.9 on p.498 of [3].)
%
%  Also, a perhaps more practical 128-QAM constellation is shown on
%  p. 1337 of [6] with varying degrees of distortion caused by
%  phase jitter. RAA
%
% Create the 128-QAM constellation symbols.
% Some of the symbols won't be used (i.e. the "corners" of the cross).
% These square shaped regions are (g,i) = (1:2, 1:2),
% (11:12, 1:2),
% (1:2, 11:12),
%o (11:12, 11:12).
%
symbol = zeros(12,12);
i=0;
for Rea =-11:2:11
i=i+1;
q=0;
for Ima =11:-2:-11
q=q+1
symbol(q,i) = Rea + j*Ima; % This might look funny because the
% quadrature coordinate 'q' corresponds
% to a row which is the first index.
% If we're in one of those corner areas, we need place holders:
if ((q==1)&(i==1))((q==1)&{==2))l((q==2)&(i==1))l(q==2) &(i==2))
symbol(q,i) = 999;
elseif ((q==11)&(i==1))l((q==11)&(==2))l(q==12)&(i==1))l((q==12)&(1==2))
symbol(q,i) = 999;
elseif ((q==1)&(i==11))i((q==D)&[(==12))|(q==2)&(I==11))((q==2)&([(==12))
symbol(q,i) = 999;
elseif ((q==11)&(i==11)((q==11)&(i==12))I((q==12)&(i==11))I((q==12)&(i==12))
symbol(q,i) = 999;
end :
end
end
symbol = A.*symbol;
%
% +++ End 128-QAM part
A
%
% +++ Begin 256-QAM part
B o o T B B B e I i o o B i
%
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elseif L == 8, % 256-QAM.
%
symbol = zeros(16,16);
1=0;
for Rea =-15:2:15
i=i+1;
q=0;
for Ima = 15:-2:-15
q=q+1;
symbol(q,i) = Rea + j*Ima; % This might look funny because the
% quadrature coordinate 'q' corresponds
% to a row which is the first index.
end
end
%o
symbol = A *symbol;

% +++ End 256-QAM part
I B e e e B B B o L L o o o
%
end % This 'end' is for the if's and elseif's above regarding the value
% of L, the number of bits per symbol.
%
% So, at this point we've constructed the appropriate constellation.
% Now, for each x(n) we calculate the Euclidean distance between x(n) and
% each symbol in the constellation. We decide for the symbol that is
% closest to x(n) and assign this symbol to y(n).
% (Ref.: MATLAB Manual, Reference Section "max, min".)
%%
forn=1:N
[row_of_column_mins what_rows] = min(abs(x(n) - symbol));
[min_dist i_coord_of_closest] = min(row_of_column_mins);
g_coord_of_closest = what_rows(i_coord_of_closest);
% -
% quadrature coord. is row index
% in-phase coord. is column index
y(n) = symbol(q_coord_of_closest, i_coord_of_closest);
end

%o
Yo [* ----=mmmmmmmn end of m-function mgam_det.m */
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APPENDIX E. MATLAB CODE FOR DETERMINING THE ADAPTIVE
PREDISTORTER AND COMMUNICATIONS SYSTEM PERFORMANCE.

SCRIPT FILE A7.M.

% Script file a7.m

%

%  This script file calculates the inverse model of the high power amplifier’s distortion

% characteristics using the Recursive Least Squares algorithm. The coefficients are

% based upon the Volterra kernel coefficients seen in other code used in this thesis.

% This script file’s functions use the same function order7.m to determine the nonlinear
% data coefficients used in the RLS algorithm. The functions called by this script include
% ad7.m, berold.m, and ad7mod.m. These functions are used to determine the initial pre-
% distorter model, determine the communications system performance, and update the

% predistorter at a specified interval.

%

% Input: The signal constellations for QAM are loaded form a .mat file.

%

% Output: The predistorter model and communication system performance.

%

% Reset the seed of the random number generator to employ Monte Carlo theory.
rand(‘'seed’,sum(100*clock));

% Identify the memory of the system, ord - 1.

ord =2;

% Load the QAM signal constellations.

load gam

% Identify the signal constellation to be employed and transformed into vector form.

xi = c64;
x=reshape(xi,1,64);

% Identify the number of iterations to be used in generating the predistorter.
points = 1000;
%  Generate a random vector to assign symbols from the signal constellation.

ra=rand(1,points);
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% Calculate first version of the predistorter.
[distdata,P,g1,g3,85,27,i1,i3,i5,i7] = ad7(ord,x,ra,points);

% Identify the range of signal to noise ratios (SNR) to be used to determine the
% communications system performance.

vec = 2.5:2.5:35;
% Initialize the probability of symbol error vector.
Pb_vec = zeros(1,length(vec));

% Call BEROLD.M. This will transmit data for a specified number of bits through the
% communications system. Then the predistorter is updated and transmission resumed.

% Identify the number of times the predistorter is to be updated.
update = 20;

% Initialize a matrix to track the error performance of each update to the predistorter and a
% vector to track the mse performance.

Pbsub1=zeros(update,length(vec));
msetrack=zeros(1,update);

% Begin the iterative transmission of symbols and periodic updating of the predistorter.
for up = 1:update
% Reshape the predistorter model into a vector and distort with the hpa model.

dd = reshape(distdata,8,8);
yyv=hpa(dd);

% Determine the mean square error of the predistorter estimate.

se = sum(sum(abs(yyv-conj(xi)).A2));sx=size(xi); |
mse=se/(sx(1)*sx(2)); ’
msetrack(1,up)=mse;

%  Simulate the transmission of data by calling BEROLD.M.
[buffer,Pbsub] = berold(dd,vec);

% Update the Pb for the system.
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Pbsubl(up,:)=Pbsub
Pb_vec = Pb_vec + Pbsub;

% Update the predistorter constellation.

[distdata,P,g1,g3,25,27,i1,i3,i5,i7] = ad7mod(ord,x,buffer,points,P);
end

% Determine the final probability of symbol error.
Pb_vec=Pb_vec/update;

% Reshape the predistorter for plotting.
distdata=conj(distdata);dd=reshape(distdata,8,8);

% Plot the Predistorter, HPA output and performance of the system.
figure(1), orient tall,

subplot(211)

plot(distdata,'o"), hold on,plot(dd),plot(rot90(dd))

aspectl

title('Predistorter Output’)

% Send predistorted signal through the Saleh equations and arrange in an 8x8 matrix..

yv = hpa(distdata);
yyv=reshape(yv,8,8);

% Plot the HPA output.

subplot(212)

plot(yv,'0"), hold on,plot(yyv),plot(rot90(yyv))
aspectl
title(('"HPA Output, delta = 15,lambda= 995, points = ',num2str(points)])

% Performance of the communications system.
figure(2),orient tall
semilogy(vec,Pb_vec),title('Adaptive Predistorter (7th Order) Comms System Performance’)

xlabel('SNR'"),ylabel('Pb")
etime(clock,t)
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2. FUNCTION AD7.M.
function [distdata,P,g1,3,85,87,11,i3,i5,i7] = ad7(ord,x,ra,points)

% function [distdata,P,gl,g3,25,27,i1,i3,i5,i7]=ad7(ord,x,ra,points)

%

% This function calculates the inverse of the nonlinear distortion caused by the high power

% amplifier using the Recursive Least Squares (RLS) algorithm. The inverse model

% calculated is used to create a predistorter to correct the amplifier’s distortion. This

% function is called by the script file a7.m. It in turn calls the function order7.m to determine
% the nonlinear data coefficients to build the column vector used as the models input. The

% Volterra kernel coefficients are solved recursively by the RLS algorithm.

%

% Input: The memory of the system (ord), the signal constellation in vector form (x),

% the vector of random numbers (ra), the number of recursive steps to obtain the

% predistorter constellation (points).

%

% Output: The predistorter in vector form (distdata), the inverse correlation matrix ®),

% the Volterra kernel coefficients (g1,g3,g5,£7), and the counters for the number of
% nonlinear terms (i1,13,i5,i7).

%

% Establish a table and assign the random vector’s elements to a point in the signal
% constellation.

TAB = [linspace(0,1,64)' (1:64)'];

zz = fix(table1(TAB,ra));

d = x(zz);

% Initialize a shift register with the number of states equal to ord..
sr = zeros(1,ord);

% Simulate the distortion, using Saleh's equations, of the data and signal constellation.

ysaleh = hpa(conj(x"));
ysalehd = hpa(conj(d'"));

% Create indices of the length of the data and signal constellation.

[m n] = size(ysalehd)
[nx mx] = size(x);

% Perform one iteration of y to determine length of the input data vector and initialize P.
[y,i1,i3,i5,i7] = order7(sr,ord);
[leny,widy] = size(y);
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% Initialize the RLS Parameters.

P = eye(leny,leny);
lambda = .995;

delta = 15;

g = zeros(leny,1);

P = (1/delta)*P;

e = zeros(m,1);
2=0;% count for mse

%  Build the input vector, y, by shifting in the data.
forl=1m

st = [ysalehd(l) sr(1,1:0rd-1)];

[,i1,i3,i5,i7] = order7(sr,ord);

% Execute the RLS algorithm.

K = ((1/lambda)*P*y)/(1+(1/lambda)*y*P*y);

e() =d() - g*y;

g=g+K*conj(e());

P = (1/lambda)*P-(1/lambda)*K*y'*P;

end
% Organize into the g coefficient vectors. One vector for each order of nonlinearity.

gl = (g(L:ord));

g3 = [gil+1:i3)];
g5 =[g(i3+1:i5)];
g7 =[g(i5+1:17)];

% Simulate the distortion using the Volterra Series.
% Reinitialize the shift register to input the QAM signal constellation.

r = zeros(1,ord);
% Iteratively shift in each point of the signal constellation.
fork=1:64

r = [x(k) r(1,1:0rd-1)];
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%  Create the nonlinearity data vector, called rworking in this call.
[rworking,i1,i3,i5,i7] = order7(r,ord);

% Initialize values for each nonlinearity order.
yl =0;y3 =0;y5 = 0;y7 = 0;

%  Calculate the first order terms.

rl =rworking(1:0rd);
yl =rl"*gl;

% Calculate the third order terms.

r3 =rworking(il+1:13);
y3=r3"*g3;

% Calculate the fifth order terms.

r5 = rworking(i3+1:i5);
y5 =15'* g5;

% Calculate the seventh order terms.

r7 =rworking(i5+1:i7);
y7=r17"*g7,;

% Calculate the predistorter data term for the signal constellation using the first through
% seventh order nonlinearity terms. This is for only one signal constellation point. One
% iteration must be performed for each point in the signal constellation.

distdata(1,k) = y1 +y3 +y5 + y7;

end

3. FUNCTION BEROLD.M.
function [buffer,Pbsub] = berold(dd,vec)

% function [buffer,Pbsub] = berold (dd,vec)

%
% This function simulates the 64 QAM communications system to determine the effectiveness

% of the predistorter for each iteration of the update. The predistorter is employed as a
% table look up function and is calculated with the functions ad7.m and ad7mod.m.

%
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% Input: Predistorter model (dd),a dn Signal-to-Noise ratio range (vec).

%o
% Output Last data symbols transmitted to be used in the RLS update, the length of the vector

% is specified internally. (buffer) The probability symbol error for the current
% iteration of berold.m (Pbsub).

% Initialize the system.

power = .4286*100/2; % Power of the symbol.

Pbsub = zeros(1,length(vec)); % Probability of symbol error vector.

L=6; % number of bits/symbol.

a=1; % amplitude of the signal.

fc = 455000;fs = 4550000; % carrier frequency, sampling frequency.
k=1000; % number of symbols to transmit.

w = 2*pi*fc/fs; % Omega.

noperiods = 10; % number of periods per symbol.

nosamples = 10; % number of samples per period.

n = O0:noperiods*nosamples-1; % vector for samplig times.

distdatal = conj(dd) % Rearrange for proper form.

buffer = zeros(1,1000); % Output vector with last symbols transmitted.
bl =fir1(5,.2); % FIR filter coefficients to remove 2fc components.

% Iteratively determine the performance for each SNR level. Each level transmits k symbols
%  determines the symbol error rate.

for num=1:length(vec)
% Set the error to zero.

error = 0;
yyv = conj(yyv);

% Transmit the symbols one at a time.
forl =1k
%  Generate the bit stream for the symbol.
d =rand(1,L);d =d<.5;
%  Shift in L bits and separate into the in-phase and quadrature components.
inphase = d(1:3);quad = d(4:6);

% Determine the codeword of the symbol. The values are real..
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%

%

%

%

%

%

%

%

%

xin = table(inphase);
xq = table(quad);

Build the QAM symbol.
sym = xin + 1¥xq;
Predistort the symbol using the predistorter loaded earlier in a table look up form.

TABh = [(-.707:.202:.707)' (1:8)'];
TABv = [(.707:-.202:-.707)' (1:8)'];
hor = floor(table1(TABh,real(sym)));
vert = floor(table 1(TABv,imag(sym)));
Build the final predistorted symbol to be transmitted.
distsym = distdatal(vert,hor);
Send the symbol through the HPA to simulate the distortion.
output=hpa(distsym);
Pulse shape the symbol.

xipre = real(output).*ones(1,noperiods*nosamples);
xqgpre = imag(output).*ones(1,noperiods*nosamples);

Modulate the symbol.

xipreg= xipre.*cos(w.*n);
xqpreg= xqpre.*sin(w.*n);

Add AWGN.
SNR_dB = vec(num);
snr = 10A(SNR_dB/10);
noise_var = power/(2*snr); ‘
xipreg = xipreg + sqrt(noise_var/2).*randn(1,length(xipreg));
xqpreg = xqpreg + sqrt(noise_var/2).*randn(1,length(xipreg));
Sum the two branches of the QAM transmitter and generate the transmitted signal.
outputl = xipreg+xqpreg;
Demodulate the received signal.

rec = outputl;
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% Mix the received signal through both branches to remove the orthogonal signal.

yc = rec.*cos(w.*n);
ys = rec.*sin(w.*n);

% Filter the 2fc component.

ycfilt = filter(b1,1,yc);
ysfilt = filter(b1,1,ys);

%  Send the signal through the summers.

ycth = (2/length(ycfilt))*sum(ycfilt);
ysth = (2/length(ysfilt))*sum(ysfilt);

% Build the received signal into the received symbol for detection.
y = ycth + ysth*i;

% Estimate the symbol transmitted using a “choose largest strategy” and determine if in
%  error.

sest = mgam_det(y,L.,a);
if sest ~= sym,
error = error + 1;
end

% Determine if the symbol must be buffered.

if 1 > k-1000,buffer(1,l-k+1000) = sym;end
end

% Determine the probability of error for this iteration.
Pbsub(num) = error/k;

end

4. FUNCTION AD7’MOD.M.
function [distdata,P,g1,g3,85,87,i1,i3,i5,i7] = ad7mod(ord,x,buffer,points,P)

% function [distdata,P,g1,23,25,87,i1,i3,i5,i7] = ad7mod(ord,x,buffer,points,P)

%

% This funciton calculates the inverse of the nonlinear distortion caused by the high power
% amplifier using the Recursive Least Squares algorithm. This function is similar to the
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% function ad7.m but has been modified. The modifications include passing the buffer and
% previous inverse correlation matrix, P. This function is called by the script file a7.m and
% calculates the inverse distortion model.

%

% Input: The memory of the system (ord), the signal constellation in vector form (x), the

% buffer from the immediately preceding communications system simulation (buffer),
% the number of recursive steps to obtain the predistorter constellation (points), and

% the previous inverse correlation matrix (P).

%

% Output: The predistorter in vector form (distdata), the inverse correlation matrix (P), the

% Volterra kernal coefficients (g1,g3,g5,27), and the counters for the number of

% nonlinearity terms (i1,i3,i5,i7).

% Initialize a shift register with the number of states equal to ord.

st = zeros(1,ord);

% Simulate the distortion, using Saleh's equations, of the data and signal constellations.

ysaleh = hpa(conj(x");
ysalehd = hpa(conj(buffer’));

% Create indices of the length of the data and signal constellation.

[m n] = size(ysalehd)
[nx mx] = size(x);

% Perform one iteration of y to determine length of the input data vector.

[y,i1,i3,i5,i7] = order7(sr,ord);
[leny,widy] = size(y);

% Initialize the RLS parameters.

lambda = .995;

delta = 15;

g = zeros(leny,1);

e = zeros(m,1);

%  Build the input vector, y, by shifting in the data.

forl=1m

sr = [ysalehd(l) sr(1,1:0rd-1)];
[y,11,13,i5,i7] = order7(sr,ord);
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%

Execute the RLS algorithm.

K = ((1/lambda)*P*y)/(1+(1/lambda)*y'*P*y);
e(l) = buffer(l) - g'™*y;

g =g+ K*conj(e(1));

P = (1/lambda)*P-(1/lambda)*K*y'*P;

end

%

gl=
g3=
g=
gl=

%
%

Organize into the g coefficient vectors. One vector for each order of nonlinearity.

(g(1:0rd));

[g(i1+1:13)];
[g(i3+1:15)];
[g(i5+1:47)];

Simulate the Distortion using the Volterra Series.
Reinitialize the shift register to input the QAM signal constellation.

r = zeros(1,ord);

%

Iteratively shift in each point of the signal constellation.

fork=1:64

r= [X(k) l'(l,lIOl'd'l)];

%

Create the nonlinearity data vector, called rworking in this call.

[rworking,il,i3,i5,i7] = order7(r,ord);

%

Initialize values for each nonlinearity value.

yl=0;y3=0;y5=0,y7=0;

%

Calculate the first order terms.

rl =rworking(1:ord);
yl =rl'*gl;

%

Calculate the third order terms.

r3 =rworking(il+1:i3);
y3 =r13"*g3;

Y4

Calculate the fifth order terms.
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15 = rworking(i3+1:i5);
y5 =15'* g5;

% Calculate the seventh order terms.

17 = rworking(i5+1:i7);
y7=r17"*g7,

%  Calculate the predistorter data term for the signal constellation using the first through

%  seventh order nonlinearity terms. This is for only one signal constellation point. One
% iteration must be performed for each point in the signal constellation.

distdata(l,k) =yl + y3+y5 +y7;

end
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